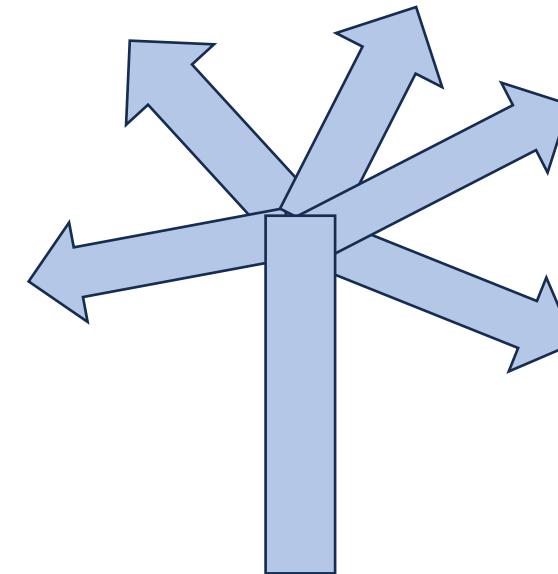


Threshold Values in Health Economic Evaluations and Decision-Making: Conceptual Bases and International Approaches

Christoph Strohmaier

GÖG-Colloquium | Health Economic Thresholds and Reimbursement Decisions for Medicines, 16/01/2026


@Supatman – stock.adobe.com

Opportunity Cost – The Hidden Trade-Offs in Everyday Decisions

If one abstracts from specific contextual factors, such as economic or political constraints, a decision is not just about what one does, but also about what one could do instead – Weighing alternative or competing courses of action.

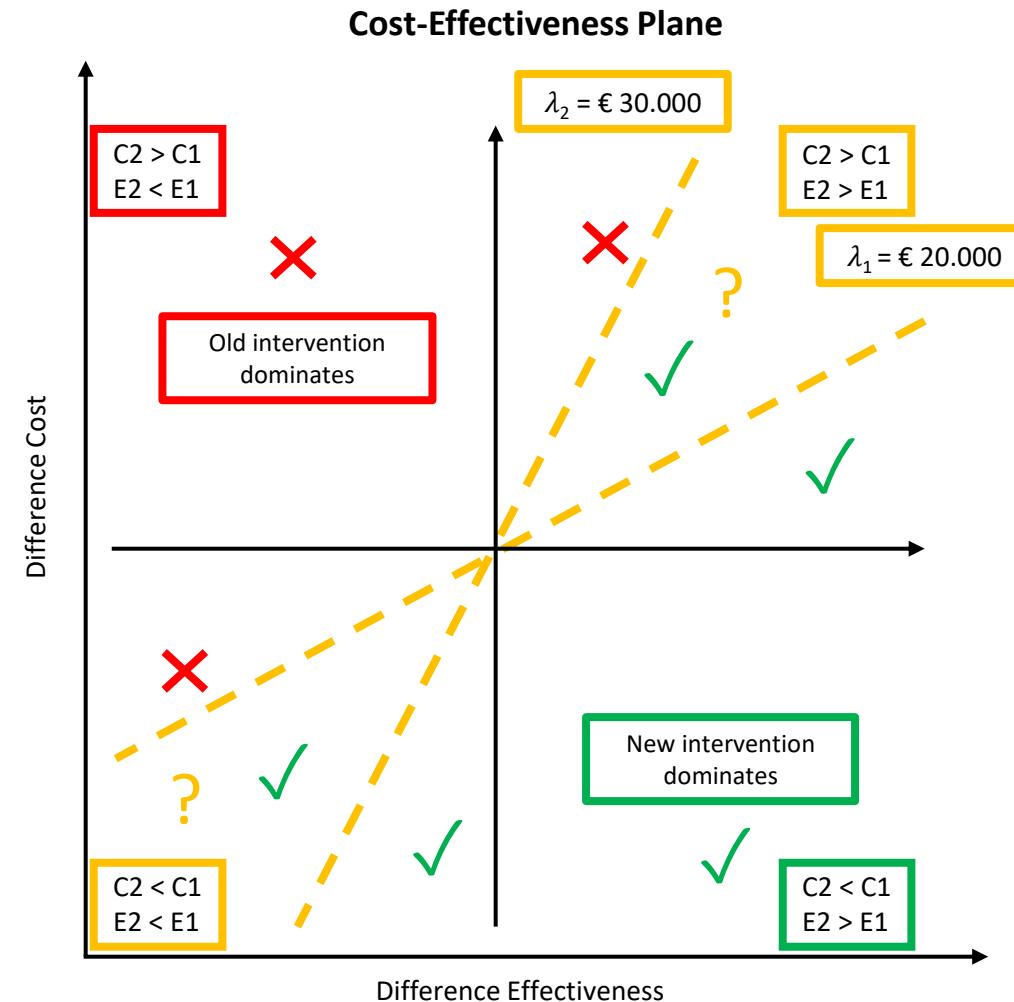
*“[...] the **opportunity cost** of making a particular **choice** is the value of the next-best **alternative** that is foregone”* – Turner et al. [2023, p. 2]

*“[...] Health economics is concerned with the **optimum use of [temporarily] scarce economic resources** for the care of the sick and the promotion of health, taking into account **competing uses of these resources**.”* – Mushkin [1958, p. 792]

What does all this have to do with health economic evaluations & threshold values?

Threshold – A decision-making criterion in healthcare

Decision-makers & policy makers decide on **resource allocation** & prioritise reimbursement decisions **based on specific criteria**:


- Optimal/efficient resource allocation
- "Sustainable" system design & planning criteria
- Additional health care specific decision- & policy-relevant factors (disease severity, orphan designation, equity, etc.)

→ Health Economic Evaluations (HEE) & Threshold:

- Systematic method to approximate opportunity costs in healthcare
- Support decisions between alternative interventions for optimal resource utilisation
- Key metric: Cost difference per quality-adjusted life year (QALY) of two interventions → incremental cost-effectiveness ratio (ICER)
- Comparison of ICER with ICER threshold:

$$ICER = \frac{c_2 - c_1}{E_2 - E_1} = \frac{\Delta C}{\Delta E} \leq \lambda \quad (\text{ICER threshold})$$

- C2...new intervention
- C1...old intervention ("gold standard")
- E2...effect of new intervention
- E1...effect of old intervention
- Δ ICER threshold/criterion

Empirical ICER Thresholds:

- Basis/Concept: **Past reimbursement decisions** & outcome data (e.g., mortality, QALYs) serve as the foundation for calculation
- Advantage: Some approaches are less data-intensive → calculation using macro-level data, considering a given budget & "desired" life expectancy (aggregated health expenditures & life expectancy → Pichon-Riviere et al., 2022)
- Disadvantage: Most approaches require extensive data (past decisions, compared interventions, costs & benefits), are methodologically complex (Claxton et al., 2015) & may not reflect societal values

Gross Domestic Product (GDP)-Based ICER Thresholds ("WHO Approach"):

- Basis/Concept: Uses a country's **GDP per capita** as a benchmark to determine cost-effectiveness thresholds (WHO: 1 – 3x GDP per capita per QALY)
- Advantage: Simple & widely applicable, especially in low- & middle-income countries
- Disadvantage: May not reflect country-specific healthcare priorities, budget constraints, or societal values → generally deemed too high by HE community

Societal Willingness to Pay (WTP) Thresholds:

- Basis/Concept: Involvement of a **representative population** → Reflects the maximum amount society is willing to pay for additional health gains (e.g. QALY)
- Advantage: Standardised methods to incorporate societal values & preferences, ensuring decisions align with public priorities
- Disadvantage: A representative universal threshold may be ethically questionable ("high-cost medications")

Efficiency Frontier Approach (EFA) → Price Ceiling:

- Basis/Concept: **No fixed threshold**, but rather alignment with the efficiency frontier
- Advantage: EFA follows a strict rule where costs/expenditures increase proportionally to health improvements → efficient combination of currently available interventions in a specific therapeutic area
- Disadvantage: No explicit threshold, but a price ceiling + focus on individual therapeutic areas

Threshold – Relevance in the Austrian Healthcare System

Thresholds: Two Interpretations, but two sides of the same coin – "We live in a society governed by a state."

- Forgone benefit through alternative resource use
- Society's willingness to pay for "health gains"

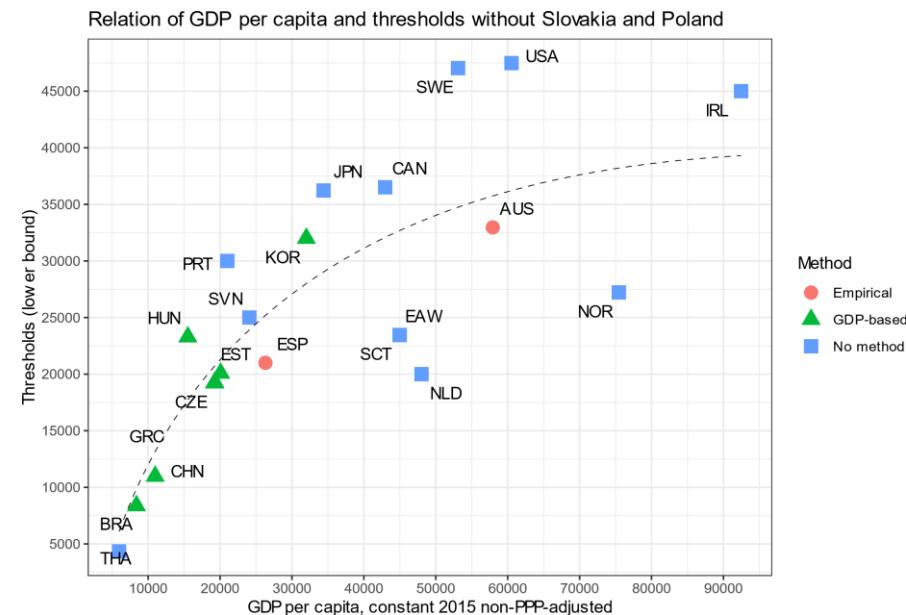
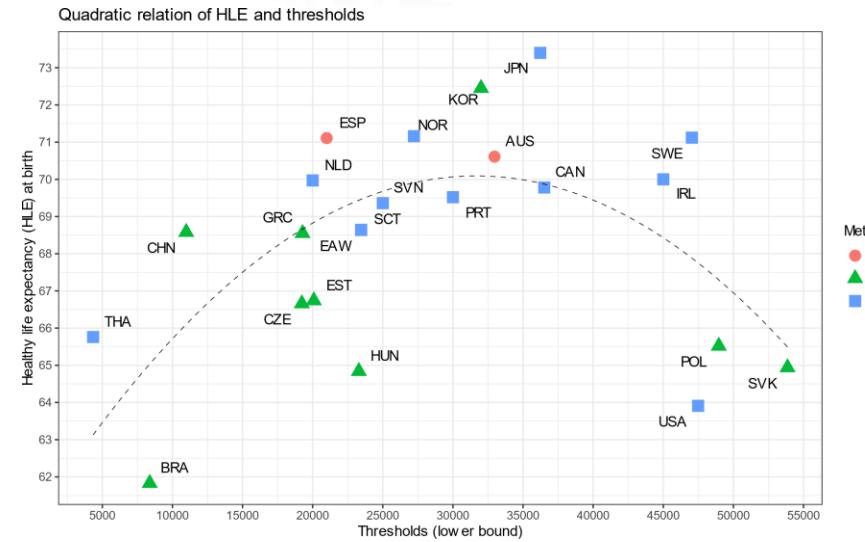
} **Reference value** for assessing the "appropriateness of the cost-effectiveness ratio" of interventions

At least five legal texts in Austria related to Efficiency or Cost-Effectiveness ("Wirtschaftlichkeit") in the healthcare system:

- **General Social Insurance Act (ASVG):** "*The medical treatment must be sufficient and appropriate but must not exceed what is necessary.*" („Wirtschaftlichkeitsgebot“ in §133 & § 351g ASVG/ VO-EKO + "Application of Health Economic Evaluations")
- **Federal Hospitals Act (KAKuG):** "*The assessment of the additional medical-therapeutic benefit...according to predefined cost-effectiveness criteria*) & potential application criteria." & "*The expected budget impact & the comparability of the price within the context of international price structures must certainly be taken into account.*".
- **Federal Act on the Quality of Health Care:** "Efficiency: *The ratio between the input & the outcome of a service according to the principle of cost-effectiveness, while considering cost containment*".
- **Federal Constitutional Law 15a (Bundesverfassungsgesetz/Zielsteuerung-Gesundheit):** "*The responsibility for the use of taxes & contributions provided by the population calls for tools to enhance the effectiveness & efficiency of healthcare*".
- **Federal Budget Act:** "*In the interest of citizens & patients, the quality, effectiveness, & cost-effectiveness [“Wirtschaftlichkeit”] of healthcare must be sustainably ensured for the future*".
- **Further acts:** Medicinal Products Act, Federal Act on Health Telematics...

International Practice – Country Overview

- 24 out of 39 (62%) surveyed countries use thresholds
- 7 countries (30%) with explicit thresholds: EST, E&W, IRE, POL, SVK, SVN, THA
- 17 countries (70%) with implicit thresholds (reference value or "rule of thumb")
- Majority are high-income countries
- Baseline thresholds:
 - Average baseline threshold: €28,500 per QALY
 - Range of baseline thresholds: ~€4,000 (THA) to €50,000 (SVK) per QALY
- 11 out of 24 countries (46%) use more flexible approaches for baseline thresholds:
 - Threshold ranges & multiple baseline thresholds
 - Example Canada: Different baseline thresholds for oncological & non-oncological interventions
 - Average upper threshold: €54,200 per QALY (n = 11 countries)
 - Highest threshold overall: USA (~€142,450 per QALY)



Calculation approach		
No method reported (n=12)	GDP-based (n=9)	Empirical (n=3)
• Canada (CAN)	• South Korea (KOR): 1 × GDP	• Australia (AUS)
• England and Wales (E&W)	• Brazil (BRA): 1–3 × GDP	• Latvia (LVA)
• Ireland (IRL)	• China (CHN): 1–3 × GDP	• Spain (ESP)
• Japan (JPN)	• Czech Republic (CZE): 1–3 × GDP	
• Netherlands (NLD)	• Estonia (EST): 1–3 × GDP	
• Norway (NOR)	• Greece (GRC): 1–3 × GDP	
• Portugal (PRT)	• Hungary (HUN): 1.5–3 × GDP	
• Scotland (SCT)	• Poland (POL): 3 × GDP	
• Slovenia (SVN)	• Slovak Republic (SVK): 3 × GDP	
• Sweden (SWE)		
• Thailand (THA)		
• United States of America (USA)		

A large, red, five-pointed starburst shape with a black outline, centered on the slide. It serves as a graphic element to draw attention to the text within it.

*Trigger Warning: No
definitive causal
interpretation! Only
explorative!*

International Practice – Threshold Associations

- Relationship Between Thresholds & Healthy Life Expectancy (HLE):
 - Quadratic fit → Inverse U-shaped relationship (Multiple $R^2 = 0.41$):
 - HLE initially increases with thresholds but declines after reaching a peak.
 - Peak: €31,650 per QALY at 70 years of HLE.
 - Higher thresholds do not always correlate with higher life expectancy → other factors (e.g., healthcare quality, lifestyle, socioeconomic conditions) may also be associated with HLE.
- Relationship Between GDP per Capita & Thresholds:
 - Linear function with square root term → No clear relationship between thresholds & GDP per capita (Multiple $R^2 = 0.24$).
 - Increasing variation at higher GDP levels: Countries with similar GDP per capita may have significantly different thresholds.
 - Influence of unspecified factors:
 - Healthcare system structure, country-specific societal values, disease burden, political priorities etc.

Threshold – A decision-making criterion in healthcare

Decision-makers & policy makers decide on resource allocation & prioritise based on specific criteria:

- Optimal/efficient resource allocation
- "Sustainable" system design & planning criteria
- Additional health care specific decision- & policy-relevant factors (disease severity, orphan designation, equity, etc.)

→ Health Economic Evaluations (HEE) & Threshold:

- Support decisions between alternative interventions for optimal resource utilisation
- Systematic method to approximate opportunity costs in healthcare
- Key metric: Cost difference per quality-adjusted life year (QALY) of two interventions → incremental cost-effectiveness ratio (ICER)
- Comparison of ICER with ICER threshold:

$$ICER = \frac{C_2 - C_1}{E_2 - E_1} = \frac{\Delta C}{\Delta E} \leq \lambda \quad (\text{ICER threshold})$$

C2...new intervention
C1...old intervention ("gold standard")
E2...effect of new intervention
E1...effect of old intervention
 λ ...ICER threshold/criterion

International Practice – Modifiers

- Modifiers:
 - Go beyond purely technical efficiency criteria
 - Quantitative modifiers: Adjust the ICER or threshold directly
 - Qualitative modifiers: Influence the decision-making process
 - Example – Norway: The priority of an intervention increases with the expected lifetime health loss (Health-Loss Criterion), reflecting a focus on addressing significant unmet needs
- Usage:
 - 10 modifying criteria for both types of modifiers
 - 15 out of 24 (63%) countries use modifiers
 - 11 countries: Quantitative modifiers
 - 7 countries: Qualitative modifiers
 - 3 countries: Both forms
- "Top 3" Criteria
 - Rare Diseases (n = 9)
 - Disease Burden/Severity (n = 7)
 - Availability of Alternatives (n = 5)

Modifying Criterion	Quantitative Modifier	Qualitative Modifier
Disease burden/severity (including end-of-life treatments)	Netherlands, Norway (Health Loss), Sweden, Czech Republic, England & Wales	Australia ("Rule of Rescue"), Czech Republic, South Korea
Rare diseases (orphan diseases)	England & Wales, Hungary, Ireland, Japan, Slovak Republic, Sweden, USA	Scotland, South Korea
"Equity"	-	Australia, Canada, Thailand
Specific indications and diseases (non-orphan)	Canada (oncology), Japan (pediatric designation, oncology)	-
Availability of alternatives	-	Australia, Czech Republic, England and Wales, Scotland, South Korea
Budget Impact	-	Australia, England & Wales
Uncertainty of ICER/confidence in estimates	-	Australia, England & Wales
Innovation factor	-	Czech Republic
High-Impact single and short-term therapies (SSTs)	USA	-
Public health relevance	-	Australia
Σ	Σ 11 Countries	Σ 7 Countries

- **Efficiency** aspects are **explicitly considered** (approximation of opportunity costs) → "Informed decision-making" & avoidance of displacement effects on healthy life years (Lancet study for UK: Naci et al., 2024 → negative QALY impact at the population level)
- **Non-efficiency aspects** (disease severity, orphan designation, equity, etc.) may not be considered, but...
- **Adjustment** of decision-relevant thresholds based on modification criteria (or multiple thresholds) is possible → should be conducted transparently & not ad hoc
- The application of health economic evaluations & thresholds **promotes transparency** in economic decisions:
 - Allocation of resources becomes traceable (input)
 - Distribution of "health gains" becomes transparent (output)
 - Enables accountability
- Negative aspect of transparency: **"Threshold pricing"** → strategic behaviour by companies
 - Pricing close to the upper limit considered "cost-effective"
 - Before price negotiations: initial price set above the established threshold

- Efficiency criterion as one of many criteria in the decision-making process
- No universal "Gold Standard" for a specific ICER threshold or modifier approach in practice
- Austria:
 - Health economic evaluations play, relatively speaking, a subordinate role.
 - The efficiency criterion & opportunity cost thinking deserve more attention (rational decision-making ≠ rationing).
 - Adaptation of health economic methodology to the national context according to the state of research is required.
 - ✓ Develop methodological guidelines, including the establishment of appropriate evaluation methods.
 - ✓ Build expertise & capacity, as well as raise awareness among relevant stakeholders (especially decision-makers & policymakers).
 - ✓ Develop transparent processes.
 - ✓ Harmonise legal terminology with scientific language.
 - ✓ Ensure continuous evaluation & adaptation.
- Commitment from the scientific community: Further research on methodological aspects & support for evidence-based decision-making.
- Commitment from decision-makers: Support through a valid data foundation (Austrian QALYs & unit costs) → prerequisite for evidence-based decision-making.

Threshold Values in Health Economic Evaluations and Decision-Making

@Supatman – stock.adobe.com

Final report

AIHTA Project Report No.: 163 | ISSN: 1993-0488 | ISSN-online: 1993-0496

<https://eprints.aihta.at/1549/>

Strohmaier, C. and Zechmeister-Koss, I. (2024): Threshold values in health economic evaluations and decision-making. HTA-Projektbericht 163.

HTA Austria
Austrian Institute for
Health Technology Assessment
GmbH